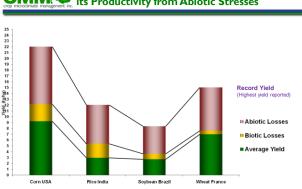


Abiotic Stress Primer


August, 2019

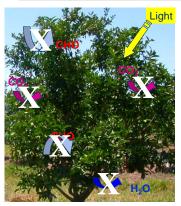
CMM 👁

Biotic Vs Abiotic Stress

• Biotic stresses are caused by living organisms:

- insects
- diseases
- weeds
- animals
- Abiotic stresses are environmental:
 - temperature (heat, cold)
 - light (ultraviolet, infra-red , white low & high intensity)
 - water (drought, flood)
 - soil conditions (acidity, alkalinity, minerals, toxins etc.)

Modern Agriculture May Lose as Much as Half its Productivity from Abiotic Stresses


Buchanan, Gruissem, Jones: Biochemistry and Molecular Biology of Plants; American Society of Plant Physiologists, 2000, FAO

- Poor plant establishment
 - increased re-planting
 - prolonged time to bearing in tree fruits
- Lower yield of high quality fruit
 - flower and fruit set issues
 - reduced sizing, despite thinning
 - twinning and reduced flower primordia (stone fruit)
- · Decreased water use efficiency
- Sunburn

When Stress Reaches Critical Level Photosynthesis Slows and Eventually Stops

Photosynthesis Stops

=> No Carbohydrate

Why Does This Matter?

- Less carbohydrate may lead to:
 - smaller fruit
 - fewer fruit (increased fruit drop)
 - reduced shoot and root growth
 - poor development of reproductive tissues
 number and quality of next season's flowers
 - periodicity

less carbohydrate = < productivity = < returns

COMMON Heat, Light, Water

- All essential for plant growth and crop production
- Too much or too little can cause problems
- All are related in their impact on plants
 - Too little water can cause plants to overheat
 - Too much light raises temperatures and increases water use
 - Too high or low temperatures impair photosynthesis and increases water loss from the crop and soil

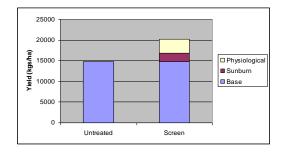
COMMON What Happens When There's Too Much?

- Light radiation (UV, visible, IR) is energy
- Excess energy added to plants is converted to heat
- Plants use water in an attempt to keep cool
- At high temperatures, plants begin to malfunction, systems shut down.....
-shut down systems cause damage to the crop

· As stresses increase, photosynthesis decreases

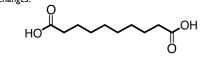
- photo-inhibition affects electron transport
- capture of CO₂ is decreased
- chloroplasts continue to absorb light
- light energy that is not used in photosynthesis is converted to free radicals (O⁻)
- free radicals damage leaf tissues
- plants use stored carbohydrate to repair damage

Additional Effects


- Disruption of membrane structure
 - Can stabilize short term with chaperonin molecules
 - Stabilize long term by acclimatization
- Disruption of proteins
 - Secondary, tertiary structure
 - Can stabilize with chaperonins
 - Alternative forms through genetic up or down regulation, epigenetic changes, protein modifications

How do plants cope with abiotic stress?

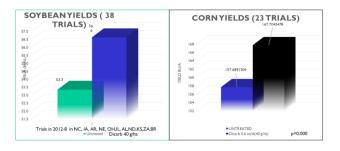
- Fast response seconds to minutes:
 - Stomatal responses
 - Possible role of nitric oxide (NO) for stress signalling
- Mid-term response- minutes to hours to days
 - Redox state of cell altered ascorbate, glutathione may be buffers
 - Activation of defence biochemistry
 - Salicylate, MAPK Kinase cascades, chaperonins, ROS coping mechanisms
- Long term response days to weeks
 - Acclimatization changes in lipid saturation, protein profile, epigenetic alternations/gene expression

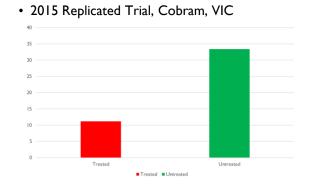


CMM About Dicarboxylic Acids

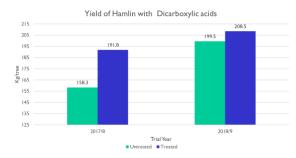

- New technology for abiotic stress management
- Increases yield and quality of crops, increasing grower returns (ROI 3-10+X)
- A blend of dicarboxylic acids (dicarb)- which occur naturally in plants
- Patented in the US(3), Australia(2), Chile, South Africa, Brazil, Indonesia, Europe, other countries pending

How Dicarb Works

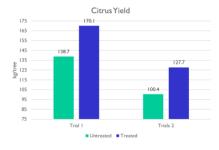

- Activates and stimulates enzymes through thioredoxin
 - Regulates photosynthesis by impacting carbon capturing enzymes and reactive oxygen concentrations.
 - Regulates cellular redox states.
 - Impacts approximately 450+ enzymes, and has a direct or indirect impact on stress signaling cascade components, such as MAP kinases, SAR systems, calcium utilization.
 - Chaperonin activityEpigenetic changes?



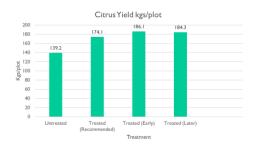
Tomatoes							
	1	Aborted Flower	Sunburn Fruit	Yield Red	Yield Sunburn	Total Yield	Soluble Solids
	Rate	per sq m	per plot	MT/ha	MT/ha	MT/ha	MT/ha
Untreated		13.3	45.0	99.5	17.5	121.7	4.5
Dicarb	8 gram ai/ha	5.0	21.3	131.0	6.6	137.6	6.2
LSD 0.05		2.4	9.4	10.6	3.5	10.9	0.5
Apples							
		Fruit Diameter	% Fruit	Apple Size	Yield	Marketable	
	Rate	mm	Commercial	g/apple	kg/tree	Yield kg/tree	
Untreated		36.9	76.8	134.0	37.0	28.4	
Dicarb	18 gram ai/ha	39.8	87.4	152.0	42.8	37.4	
LSD 0.05		1.6	2.7	9.5	3.9	3.6	
Wine Grapes							
	1	% Bunches	Yield	Bunch Weight	Yield		
	Rate	Commercial	kg/vine	grams	kg/ha		
Untreated		70.3	2.1	56.9	5333.0		
Dicarb	8 gram ai/ha	96.8	3.6	94.7	9230.0		
LSD 0.05		13.6	0.5	14.9	1256.0		
Citrus							
	1	Early Fruit Diameter	Fruit Number	Percent	Fruit Diameter	Yield	
	Rate	mm	per cubic meter	Sunburn		kg/M3 Canopy	
Untreated		27.5	5.3	6.8	66.7	2.2	
Dicarb	18 gram ai/ha	29.5	10.6	2.8	71.6	3.6	
LSD 0.05		1.4	2.5	15	0.5	03	


Trial Data Australia 2009/10

Citrus Yields Australia


Results in Brazil

• Uniceres – Monte Azul Paulista


Results in Brazil

• Trials in Brotas

Results in Brazil

• Replicated trial by FarmATAC in Bebeduro

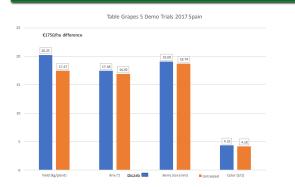
Results in Brazil

• Sunburn -Aquai

Sunburn Fruit p	per Tree					
	Bad	Medium	Low	Loss cx/ha		
Untreated	5.32	4.48	1.61	8.5		
Treated	0.0	1.7	3.74	0.0		

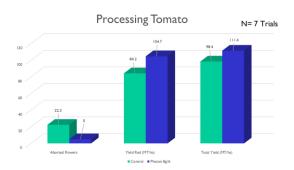
Níveis de Dano

COMMON


• Sunburn Trial

Citrus Recommendation in Brazil

- 3 applications of 40 g/ha commercial product
 - Begin applications at flowering
 - Repeat every 20- to 25 days
 - Include surfactant
 - Sufficient water to cover, NOT to runoff



COMMON Tomato Results

Potato

Yield Untreated 6.1 kgs, 145 g/tuber

Dicarb 6.7 kgs, 175 g/tuber

Drought Stress

COMMON Tomato Cold Stress

Dicarb

About Dicarboxylic Acids

Dicarb has been used commercially in horticultural and agronomic crops :

- Australia 7 years
- Chile 6 years
- South Africa 6 years
- Turkey 5 years
- Others (USA, BR, Mex, etc) 3 or fewer seasons
- Provides excellent efficacy and high grower satisfaction.

Additional Considerations

- Blueberries, cherries, peppers, and other fruit have shown better firmness at harvest
- Increased postharvest storage has been observed in cherries, squash, tomatoes, peppers, other crops

